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Abstract. Extending the results for periodic boundary conditions obtained in a previous paper
we analyse a single polymer chain in a good solvent contained in a finite box with Dirichlet
boundary conditions. We develop a consistent mean-field approximation, apply it to different
geometries and discuss in detail the chain length distribution for the ‘field theoretic ensemble’ of
chains characterized by a chemical segment potegitiadiVe show how the different regimes of the
dilute (4} < f1,) and densef} > fi,) limits (wheref} stands for the critical chemical potential)
smoothly evolve from one another.

1. Introduction

We consider a polymer solution described by random walks with effective segment repulsion.
The system is characterized by the concentration of chairsd the average chain length
(polymerization index)N. In the critical (‘excluded volume’) limit of vanishing segment
concentratiorr = Nc¢, — 0 andN — oo it shows the typical power law and scaling
behaviour, which is well understood in terms of the renormalization group formalism. In this
limit the average siz& of an isolated polymer coil behaves as a function of the chain length
asR ~ N, where the critical exponemtin three dimensions is given by~ 0.588.

We now confine the polymer system to a container of typical linear dimeiisiés long
as the relatiorN¥ « L holds, finite-size effects will be neglegible. Clearly this is the case in
the usual thermodynamic limit, where we takeo infinity at fixedc, andc (or equivalently
fixedc, andN). However, other scenarios are possible. For instance we cai takex and
fix the segment concentratierand the number: of chains instead of the chain concentration.
This is the so-called dense limit, where the average chain length scale¥ likeL? in d
dimensions. WithR ~ NV we see, that in this limit fo > 2 the ratioR/L ~ N'~* grows
without bound and finite-size effects will play an essential role.

Our aim is to describe the crossover between the different limits. In a previous paper [1]
we considered the case ofladimensional hypercube with periodic boundary conditions in
all 4 directions. We considered the chain length distributftan, [i,) in the ‘field theoretic’
ensemble for a single chain, where the average chain length is controlled by a segment chemical
potentialii,. Then

. e Z (n)
P(n, iis) =

_ &2 1
> enZ(n) @)
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gives the probability to find a chain of lengthin the ensemble.Z(n) here stands for the
partition function of a single polymer line of length Adopting the notation of [1] carets are
used to distinguish quantities referring to the discrete chain model from their continuous chain
limit counterparts.

For periodic boundary conditions we used a perturbation approach originally developed
in [2]. The main feature of this approach consists in integrating out the zero mode completely
before turning to a perturbation expansion for the higher modes. This way the usual finite-size
difficulties arising in a perturbative treatment of the zero mode are avoided. The formalism
covers the whole crossover from the dilute to the dense limit. We showed that the dilute limit
is realized byl — oo at fixedi; < ¥ (i stands for the critical chemical potential) whereas
fs > [1¥ describes the dense limit. In the different limits the chain length distribution yields
very different results. While in the dilute limit the known result of the bulk theory

P(n, i) ~n’ " te 7N N = N(i) )
is recovered, in the dense limit for a single ch&itu, [i;) becomes sharp
N noo_ A
P(n, i) ~ 8 (ﬁ - C) ¢ = c(fiy). 3)

Finally, in the highly overlapping ‘semidilute’ limit of infinitely many chains (2) or (3)
respectively reduce to the exponential distribution

P(n j) ~e"N N =N 4)

The aim of this paper is to extend the discussion to the more realistic (physical) case of
Dirichlet boundary conditions, demanding a vanishing segment density on the boundary of the
container. These boundary conditions describe, for instance, the situation of polymers inside
porous structures, a problem important for many practical questions. In this context an often
considered and also measured [3-5] quantitiy is the so-called partition coefficient

k=%
CE
giving the ratio of the segment concentratigninside a porous medium which is in contact
with a polymer solution characterized by the segment concentratiorin thermodynamic

equilibrium K would be given by
2
Zg(N)
whereZz;, Zg are the respective partition functions in and outside the porous material. This
way the problem reduces to the calculation of the partition function for polymers confined to
small pores of a given geometry.

The situation of Dirichlet boundary conditions is more complicated than the periodic case
since the zero mode (which means the mean-field solution of the problem) is no longer given
by a constant: it becomes spatially dependent. This gives rise to many technical problems.
Even the determination of the zero mode itself will be rather difficult. Such problems are
known from the field theoretic finite-size methods for #fel_andau—Ginzburg—Wilson model
(LGW). There different zero modes have to be considered above and below the critical mass
and a treatment of the higher modes is practically impossible. So one has to restrict oneself to
the so-called renormalized lowest-mode approximation [6], integrating out only the amplitude
of the mean-field (‘zero’ or ‘lowest’ mode) solution.

For the polymer problem, which is directly related to the LGW model in the limit of a
zero-component vector field [7-9], a first attempt would be to directly use the results for
the LGW model and translate them into the polymer context. However, to get the partition
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functionsinthe canonical ensemble considered in [1] we would have to perform inverse Laplace
transformations of the*-results, which are at least below the critical temperature (which in
the polymer language describes the dense limit) analytically not treatable. So it seems useful
to develop a formalism for Dirichlet boundary conditions directly in the polymer formulation.
Following the lines for periodic boundary conditions the first task would be to identify the zero
(mean-field) mode and construct a consistent zero-loop (lowest-mode) approximation. We will
see that for the most geometries this is rather complicated. So we will use the so-called ‘ground
state approximation’ to get analytical results. Later we will show that by restricting to this
ground state approximation all fluctuations around the mean-field solution can be integrated
out. What can be done beyond this approximation strongly depends on the specific geometry
considered.

To avoid misunderstanding we want to stress that whenever we speak of ‘mean-field
theory’ we are dealing with zero-mode results for (swollen) chains with effective segment
interaction. This way ‘mean field’ does not mean treating ideal (Gaussian) chains.

The organisation of this paper is as follows. In section 2 we develop the mean-field
formalism for Dirichlet boundary conditions using the ground state approximation. Insection 3
itis applied to a/-dimensional hypercube with Dirichlet boundary conditions inztuirection
and periodic boundary conditions in the remaining directions. The theory is renormalized
following the lines of [1]. In section 4 we discuss what can be done beyond the mean-field
approximation. Finally, we consider in sectié a three-dimensional sphere as a geometry
finite in all directions. There mean-field results can be obtained only by numerical methods.

2. Mean-field approximation

We start with the standard formulation [10, 11] for the partition function of a single polymer
line of lengthsS in the continous chain limit

B (4 [2)4/2 CA [ dlr g2 dirddr .,
Z(S)_TfD[cp]e 20 78 QWG("J’,SJP) )
with the Green function
r(S)=r' )
G(r.r', S [o]) = / o, Dlrtoe bl mee) (6)

of the diffusion equation

9 . ,
[ﬁ_Ar+|¢(r)i| G, 1, S, [(ﬂ])=0 (7)
G@r,r',0,[¢]) =8 —r").

Corresponding to the relation
- [ -
(p(r)) = —((r)) (8)
uo

which is obtained in the standard manner by introducing a sourcefggd‘h o (F)p(¥) intothe
partition function, we have to impose Dirichlet boundary conditions for the segment density

N
G) :/ ds 84(F — F(s))
0

directly to the the auxiliary fielg (v).
To determine the mean-field solutign, () we now need the functional derivative
8G /8¢ (r). We see that (7) has just the form of a Smltinger equation

(i0, — H)yy =0
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with the imaginary time = —iS and the Hamiltonian
H=—A; +ip(QF).

We will see later that the mean-field potential - (¥) becomes a real function.
G may be written as

G, 7, S, ¢) =Y yi)e 5y, ()

where they, are the normalized solutions of the eigenvalue problem
va(7) = vau(7)
/ d'r Y (Y () = 1.

The complete eigenvalue problem would be largely analytically unsolvable. But since the
spectrum is discrete we can use the ground state approximation
G, 7, S, 9) = Y (e oy (F) (10)

which is clearly good for very long chains, i.e. for every finitave can find chain length$
large enough to ensure that the ground state approximation will produce reliable results. But
the question is rather if this approximation is appropriate to describe the region of relevant
chain lengths in the field theoretic ensemble. We will see later that in the geometries which
we consider the energy g, — Eo) scales for largd. like (E1 — Eog) ~ L~2. So the
ground state approximation surely will be adequate in the dense limit, v§ti&re— Eg) for
the relevant chain length& ~ L¢ in the ensemble fof. — oo andd > 2 tends to infinity.
On the other hand, in the dilute limit, where we deal with a constant chain length independent
of the system size, the ground state approximation breaks down with gréawiBgpending
on the chemical segment potential determining the relevant chain lengths in the ensemble we
then would have to carefully examine if the approximation holds. However, we will see that
the results obtained with (10) in the dilute limit smoothly join the expressions obtained in the
lowest-mode approximation for the-LGW model mentioned in the introduction (cf [6, 12]).
In this sense the ground state approximation may also be sensible in the dilute limit.

With (10) we obtain for the partition function

1 1 N
29 = / Dyl 70 o &' ¢* ") =SEoly] / d’r dr' s (7)o (F)
Q

where the energy of the ground stdtgis a functional of the auxiliary fielg.
The mean-field equation then reads

C)

PMF

Standard time independent perturbation theory for the@thger equation yields
SEol¢] . -2
=i
500) [Yo(r)l
and we obtain
our (F) = —iuoS|¥y"" (7). (11)
The superscript ‘MF’ resembles the fact that the ground state solution depends on the

corresponding mean-field functign, .
To be consistent we have to ensure ((9), (11))

[— 25 +uoSy"" () P13 () = Eoyd!" ()
/ddr [ (7)1 = 1.

12)
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With (11) the boundary conditions fen, » pass over ta/{’*. Moreover we have to guarantee
that, if we found a solutiony}’* of (12) and this way determinegl, » by (11), the originally
chosen functiony3’# is really the ground state solution of the problem

[—27 +ipurlY (F) = EY (F). 13)

This can be ensured by searching fopgl” without knots(y)’# = 0) inside the container
[13, 14]. Together with the boundary conditions and (12) the functigii§ and respectively
our(7) are then uniquely determined.

The mean-field partition function is finally given by

1 r P)— ’ =/ =
ZMF(S) — 58 230 fg dd W%/lF( ) SEO[(ﬂMF]/ ddl" ddr I//é\lF*(r ),‘/féwF(r) (14)
Q

Before really turning to Dirichlet boundary conditions we test our formalism on the geometry
extensively studied in [1], i.e. d-dimensional hypercub® with linear dimension. and
periodic boundary conditions in all directions.

For the nodeless solution of the problem (12) we find

1 uoS
MF /2
Voo =Tam  Eo= g
So we have a constant mean-field solution
N . MQS
our(r) = —|7

and the mean-field partition function becomes
ugs?
Zur(S) =€ 27,
This way in our mean-field approximation we recover the correct three level result for the
partition function for periodic boundary conditions (cf [1]).
With the given constanp,, » we are able to construct the higher energy solutions of the
eigenvalue problem (13). The energies of these higher modes are given by
2w

E; = k% + Eg ka = kK Ko =1, £2, ...

and for the energy gap we gef, — Eo) = 4mw2/L2.

3. Dirichlet boundary conditions in one direction, periodic boundary conditions in
d — 1 dimensions

3.1. Unrenormalized mean-field approximation

We are now going to apply our formalism to a geometry with Dirichlet boundary conditions. We
consider a/-dimensional hypercube of linear dimensibmvith Dirichlet boundary conditions

in thez-direction and periodic ones in the remainihg 1 dimensions. This geometry (instead

of Dirichlet boundary conditions in all dimensions) has the advantage that the problem (12)
effectively becomes one-dimensional:

d2
[ — +u05|¢§4F(2)|Z] v (2) = Eovd'" (2)

dz2

L
/ dz [y ()2 = LY
0
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and can be solved analytically [15]. The nodeless solution is given by

L . «/MoSL MF:|>
. 2K(k)F <k, arcsm[—\/_ KO 0<z<L)/2
- L JuoSL MFD
L———F|k, L/2<z<L (15)
2K K) ( aresin [JﬁkK(k) /ess

Eo= = k2 + K2 (k)
0= ﬁ( ) ~
The solutions for the two intervals & z < L/2 andL/2 < z < L join smoothly. The
parametek is determined by the normalization condition
8K (k
g)Ld 2(K (k) — E(k)) = 1. (16)
uo

Y{!* lies in the interval [Of"K(k)] andK, E, F stand for the elliptic integrals

E(k):/ V1—k2sir? ¢ dg
On/Z do
K(k)Z/o J1- kst
F(k,@):/ed—¢.
o V1-—k2sirte

The solution (15) exists for arbitrasy uo. Forthe ground state energy the relatiy> w2/L?
holds.
For the generalized partition function in the mean-field approximation (14) we get

(17)

ZITO(S, py) = Aglis—i)S*B (18)
where
8L4 k2 |: x dx i|2
uoS V(@ = x2)(1 — k2x2) (19)
2k4K3(k) 2(k? + 1) K&\ 45 , )
N ( 2 (K (k) — E(k)) — %2 )— ﬁ(k + 1K= (k).

In the mean-field approximation the critical chemical potential is givep by- 0.
We now discuss this result in the various limits studied in [1].

3.1.1. Dilute limit. In the dilute limit (@, < 0, L — o00) or (S — const, L — oo0) we get

with (16)
/ uoS b4

Defining

z=z/L

~wr  uoSL (20)

Wo = 1/f

- VBKK (k)

and taking into account (15) we can write

Fo T

0= 73 (21)

YA s sin(n3).
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Figure 1. Local segment density for fixathS = 1000 and various system sizes

A more interesting quantity is the local segment density (cf (8), (11))

(o) = Mlogow(?) G 22)

Figure 1 shows the normalized quantiy!" |2 = ﬁ%(p(?)) proportional to it for a fixed

chain lengthugS = 1000 and various system sizes (In all results we sef = 3.)
In the limit L — oo we get

(p(F)) —> 2csir? (%)

wherec stands for the total segment density= S/LY = [d’r (p(F)). The local segment
density grows quadratically for small values phear the boundary of the system, a result
found also in [16]. For the mean-field partition function in the dilute limit we find
8 2 3upS
(MF) _ " 0
Ze (S, 1) = ;eXp[(ll«s — ug)S — ﬁS - ZF:| .
The leading finite-size corrections are given by ¢hé/L?)S-term in the exponent. So one
could argue that due to the finiteness of the system the chemical segment potential gets shifted
by (72/L?). However, this interpretation does not hold in the renormalized theory discussed
later. There the chemical potential is renormalized, but not the system sizes %tidf) S gets
a function of the finite-size scaling varial{e’ /L) not proportional to:.

(23)

3.1.2. Dense limit. In the dense limitg, > 0, L — oo) or (c = §/L¢ — const, L — o0)
respectively we find with the notatigh= uqS/L?

CL?
k—1 Ek) — 1 Kk) — r
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z

Figure 2. Local segment density for fixatl= 0.01 and various system sizés

The ground state energy tends to a finite limit
Eo — ¢

and for the local segment density we get the behaviour shown in figure 2. With growing system
sizeL the local segment density reaches a constant (namely the total segmentdaisityst
in the whole volume with steep descents at the boundaries of the system. We can define the
thickness the of the boundary layer as the valug ofhere the local segment density reaches
the half of its maximum

def , »

d. = z(g" P = 3.

Then we get using (15)

d L pu in1/v/2 \/5 FQ,7/4
= K0 (k,arcsinl/v2)) — 2 (1, 7/4).
The thickness of the boundary layer for — oo tends to a constant proportional to the
screening lengtljz ~ ¢* (cf [1]) independent of the system size. Such a behaviour could
also be expected by simple scaling arguments (cf [17, 18]).
The mean-field partition function in the dense limit can be written as

d

) L, ., 28, -

We find the same leading term%i2 as for periodic boundary conditions in [1]. The Dirichlet
boundary conditions manifest themselves as correctiofigL to this leading behaviour.
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3.2. Renormalization

For the renormalization of the theory we note that renormalizability is a statement about the
short-distance behaviour, independent of whether the system is finite or not [19]. We thus can
take over the standard bulk renormalization scheme (cf [1]). We define a renormalized length
scalely and replace the bare quantities by their renormalized counterparts

S = ngl2Z,(u)

uo = (4m)"2ul g Z, (u) (25)

Wi — s = Eglg?Z, M w).
The renormalized form of the generalized partition function is given by

Z,
Z®(ng, Eg,u) = — 26 (S, 15 = s, o). (26)

The renormalization constan®s Z,,, and Z, are determined as functions @fby requiring
thatZ((;R) is finite in four dimensions. For our zero-loop approximation they can be replaced
simply by constants. With (25) and the notidn= (47)?/?u/2 we get for the renormalized
partition function

Z\X) = Aexp(B)

A_( >8k2[/ x dx T
ng \/(1—x2)(1 k2x2)

B2 () (ZE_1), )" K(k)E(k) §—4(k2+1) @

— YR\ 3 6) "*\L 3

32 ,K%(k)E?(k) (g
BER (z) ~ Err
The normalization condition determining the paraméter modified into

8K (k) (L2

K® (—) (K(k) — B() = 1. (28)
ung lR

As for periodic boundary conditions we restrict ourselves to the excluded volume fixed point
u = u*. There the mapping from renormalized quantities back to the physical ones in the
discrete chain model is given by

B 1/v
ngp =\ — n
R lR

lR 1/v
Er = (0} - m( ) (29)

I (y=b/v
R
By

with the critical exponents ~ 0.588 andy ~ 1.157 ind = 3 dimensions. The parameters

B, B; depend on the microstructure of the system. Throughout this paper we will use the

value B = 0.4631 found in [1] for periodic boundary conditions by comparing the theoretical

results to Monte Carlo data. Since we will normalize all partition function8to= 1) = 1

the value ofB; is of no importance for our purposes. The renormalized length sealdl be

fixed by the crossover relation
)

1
1=—+= cr = 0" —ngl} co=1.2 no = 0.53 (30)
ng  Co Ld
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Figure 3. Partition function at the critical chemical segment potential= 0 for periodic and
Dirichlet boundary conditions and various system sizes 8, 16, 32, 64, 128 256. Dirichlet

boundary conditions are represented by the full curves, periodic boundary conditions by the broken
curves. The respective curves left and right of the system size numbers belong together.

smoothly interpolating between the dilute limit and the case of finite concentration (see [1]).
Figure 3 shows the results for the partition function

n R V4
ZM0 0, oy = =~

Ix (y=D/v
Mr(Egong.lp/L) = (= Aexp(B)
Z, B
at the critical chemical segment potential = 0 compared with the zero-loop results [1]

for a system with periodic boundary conditions inldlirections. It is clearly seen that the
maximum of the partition function for Dirichlet boundary conditions is shifted to smaller chain
lengths.

Finally we consider the chain length distribution in the dilute and dense limits.

3.2.1. Dilute limit. For i, < 0, L — oo we get with the crossover relation (30)

vV
n
ng — no lR—>B<—)
ng

and using (28) we recovér— 0 as in the unrenormalized case. Respectively (27) yields
ZM(n, i) = const - p¥ Dl —hn

the well known result for the bulk partition function. The scaling form of the partition function
2 4
Z6(n, ;) = €M7 —Z® (g, Iz /L)

n

ensures that this result is exact to all orders perturbation theory. Hence the chain length
distribution (1) is given by (2).
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3.2.2. Dense limit. In the dense limiti, > 0, L — o0, [¢ gets a function of the segment

density
Sy v/(1-vd)
Ip = Ip(c) = (”—Bl/“c)
co

and the generalized partition function as a functiom on be written as
ZMP)(¢) = const - ¢154 eXp[—Ld (clcw‘/"l + %Czc% - /Scj)cﬂ "
where

C = 2_;(,;*31/‘,)#5%&%

2./8
- 3
The leading term~ C; is identical to the zero-loop result for periodic boundary conditions,
whereas the term proportional @ describes the corrections due to the Dirichlet conditions.
To get the chain length distribution (1), the field theoretic partition funcign= [ dc Z5(c)
must be evaluated by the method of steepest descent. Thénforo we recover the result

P(c, i) = 8(c — ) (32)

B v
(@*B /V)Z(vd—l)co(' .

C>

known from periodic boundary conditions, but with a slightly modified value for the mean
segment density given now by the equation
vd 1 13vd -5 _ _u-se

Cievii+ ———— — (Cyc2vi-d — (f, — 5 =0 33
d—1 1C Va1 L20vd —1) 2C (1 iy) (33)

instead of
vd
vd — 1
as in the periodic case. To leading order (33) yields

-1 ~ A
C107T — (s — 1) = 0

_ 3vd—5v _2
(cprp) 2 + O(L™)
with the zero-loop saddle poiap z¢ for periodic boundary conditions

o _[wd =D -]
PBC vdC, .

Compared with the periodic case the mean segment density in the dense limit for Dirichlet
boundary conditions gets shifted by a correctierd/L to lower values.

With (32) the complete discussion for the crossover from the dense to the semidilute limit
in [1] can be repeated also in the case of Dirichlet boundary conditions.

Figure 4 shows how the segment density distribution with growing systenisiz¢he
dense limit tends to the delta-function. For comparision we added the zero-loop results for
peridic boundary conditions in all directions. The chemical segment potential is fixed to
s = 0.1. The bulk £ — o) value for the segment density is given &y, = 0.2001 and
(within the accuracy of the plot) identical to the maximum of the= 512 peak for periodic
boundary conditions.

Figure 5 shows the finite-size results for the equation of state relating the chemical potential
to the mean segment density.
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Figure 4. Segment density distribution for periodic and Dirichlet boundary conditions and various
system sized = 64, 128 256, 512. Periodic boundary conditions are represented by the full
curves, periodic boundary conditions by the dashed or broken curves.

4. Beyond the mean-field approximation

In the mean-field formalism constructed in the last sections we made two essential
simplifications: (i) we neglected all fluctuations around the mean-field solution by setting
o(¥) = ey r(¥) and (ii) used the ground state approximation for the mean-field Green function
G, 7, S, our). Wewillnow show that the ground state approximation plays the fundamental
role in our mean-field formalism in the sense that within this approximation all fluctuations
aroundg(7) y r can be integrated out without changing the result.

To this purpose we expand the auxiliary figlF)

@(F) = our(F) +8¢(F) 8o(F) = popumr (F) + o (F) oL our.

For the Green function (6) we can write

FS)=F" Fo)2si = o -
GGF.7.S. ) = / Dlr (s)le™ Jo SLEH o FsN=i g dsspFis)),
FO)=F

Expanding the exponent iy we get
G, 7', S,¢0) =G, 7', S, our)

+(—i) ds / d'r1GF, i1, S — 5, our)8oF1)G(F1, 7', s, our)
0<s<S

+(—i)2/ dsldsz/ddrl dr, GS@G8PG + - - - (34)
0<s1<s2<S
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Figure 5. Equation of state for periodic (PBC) and Dirichlet (DBC) boundary conditions and
system size€ = 64, 128. For comparision the bulk curve is also shown.

Now using the ground state approximation (10) &, 7', S, ¢ur), the expansion can be
resummed to yield

G, 7, S, ¢)=G@F, 7,8, wMF)(l +(—i)S / d?r 8P Y (R 2

. 582 R TP
H=D? [ / dd715¢(r1)|‘ﬁ(1)wF(”l)|2i| +>

— G(}_;, 7S, goMF)e—iSfddrﬁ@(ﬁ)\l//é‘“(;l)lz
— G(?, ;}” S, QOMF)e% fdd"15€0(71)<ﬂ/\41:(71)' (35)

Inserting this result into (5) we can integrate dutcompletely
Z(5) = f Dlsgle 25 o ® OO 2, 1(8) = Zup(S)

and recover the mean-field result for the partition function. The fluctuations do not yield any
corrections. In this sense within the ground state approximation the mean-field result for the
partition function is exact. The ground state approximation neglects all spatial correlations of
the auxiliary fieldp () beyond the mean-field contributigp (+)) (¢(7')). This is the main
feature of our mean-field formalism.

Respectively, the range of validity of our mean-field approximation is determined by
the breakdown of the ground state approximation for the Green function (see the discussion
following equation (10) in section 2).

To get corrections to the mean-field results we thus have to improve the approximation
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Figure 6. Local segment density for a sphere with Dirichlet boundary conditions at fixed
upS = 1000 for various system sizes. The full curve represents the limiting function
sir?(zr)/72r2 in the dilute limitL — oo.

for the Green function
G 7, S, our) = ) Wi e Sy, ().
What can be done analytically strongly depends on the geometry considered. If we return to the

d-dimensional hypercube with Dirichlet boundary conditions inzfdrection and periodic
ones in the remaining — 1 dimensions, the solutions of the Sgtiinger equation

[— A7 +uoS|y" )1, (F) = Ev (F)
can be written as
Yo () = Y g () = @Bty ()
En,q =E,+ 6]2
where
qi = —K; KiZO,Zl:l,Zl:Z,....

Thevy,, E,,n=0,1, 2,... are the solutions of the one-dimensional eigenvalue problem

d2
[—— + uoswc?”(zﬂ Y (2) = Eua(2)

dz?

L
f dz [Y, ()12 = L.
0

¥, E, cannot be evaluated analytically.
However, we can avoid this problem by considering a geometry with different length scales
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Figure 7. Local segment density for a sphere with Dirichlet boundary conditions atdixe.001
for various system sizes.

in the Dirichlet and periodic directions. Lét, be the linear dimension of the finite box in
the z-direction with Dirichlet boundary conditions ard- the respective scale for thie— 1
directions with periodic boundary conditions. If we require > L p, which means choosing
a plate geometry, the energy gap— Eo will be much larger then thg?-fluctuations around
the ground state enerdyy caused by the periodic modes. So it will be reasonable to improve
the ground state approximation by including periodic fluctuations into the approximation for
the Green function and neglect only the higher energy solutions of the Dirichlet problem in
thez-direction.

This way we have

G 7', S, our) = Y W55 B 5 y04(7)

q (36)
Yo (F) = €1y (2) FiL={x1,...,xq-1}
wherey{!* (z) is given by (15) with the slightly modified normalization condition (16)
8K (k) L4

wS Lo (K(k)—E()) =1

due to the two length scales. Inserting (36) into the expansion (34) we get
G 7. S,9) =G 7. S, our)
N
=) / ds / d'r ) o ()Ys s, Foe oS we
0 G2
= = * >IN a—g2s
x8@(r)Yo,g, (r)vg 5, (r e +---.
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So we have to consider integrals of the form
/ d'r Sp(F)e PR |y (o) 2. (37)

Ifwe restrict ourselves to the lowest-mode approximation [6], integrating out only the amplitude
of the mean-field solution, i.e. if we set

8¢(F) = Gopmr ()
3¢ depends only on the-coordinate and the integrals (37) reduce to

Lp
L4z, 2, ; dz 80 @) 1Yo ()17

Then in complete analogy to (35) we recover in the approximation (36) the result
Z(8) = ée—ﬁ Jad'r @i @) fg dr dfr’y " T Ty (g e Er DSyl F ()
q

= Zyr(S)

for the partition function, which differs from (14) only by the modified normalization condition
for the parameter and again indicates the high structural stability of our mean-field formalism.
Itis possible to go a step further beyond the lowest-mode approximation by also including
periodic fluctuations fo8¢ around the mean-field solution
- - - - 1 .
S0 =i} GV ®) i) = 1€ ug! ()
q

Lp 1/2
N=<L‘£‘1 fo dzwé”(z)ﬁ) :

Using this approach together with the approximation (36) for the mean-field Green function
we get with (34)

LD LD _
f dr d?r G, 7, S, @) = e BS L4 / dz v {'* (2) [ dz’ ' (2)Goo(S, @)
0 0

] o (38)
Goo(S, @) =1+ (=yull’N7 >~ AL j—1)J;
j=2 1:1 ..... ];/-,1
where we adopted the notation
AL ) = ¢§1¢§2*§1 cee 95‘?;‘*5}—1@75/‘ (39)
J = /0 eXp—(sj — 55 1)y — -+ — (52— 51)42) (40)
<s1<-<8;<§

of [1]. We are now able to integrate out the zero-mode amplifigdmmpletely by reordering
the expansion

Goo(S, ¢) = <1 Y (=Y (%ué/sz@é)
j=1 )

j= k

o0
| LoD N Y AL =D,
j=2 kl,...,E_,_l @OEO

fos 1/2, 0 =
= e 5001 N Goo(S, ¢)
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whereg’ like for periodic boundary conditions contains ogly4 0 modes. For the partition
function we thus get
Lp

A 1
2(8) = 5e—E°SLi dz y{'F (2) / dz’ v () / e*i#ow 1Goo(S, ¢')
0 q;éO

= Zyr(S) / ﬂeﬁ Y097 Goo(S, @) (41)
q#O

with Zy,r from (14). As could be expected we reproduce the result (20) of [1] with the only
modifications that the mean-field partition function éxpS2/2L¢) for periodic boundary
conditions has to be replaced by the respective Dirichlet expressignand inGoo we sum
only over thed — 1 periodic directions.

Restricting inG oo to the contributions quadratic ify; we get (cf (25) in [1])

2u0S e’ —1
Z(8) = Zyr(S) exp( -z gl ( 2L + 2ug =y )) (42)
The critical chemical segment potential in this approximation is given by

~ % 1 2140

Ky =5 Z 374

2 70 1 L

Becausej again is only § — 1)-dimensional, the sum in (42) is finite in four dimensions and
by renormalizing the theory we have to use the zero-loop expressions fBrftetors.

5. Dirichlet boundary conditions for a sphere

Inthis section we finally consider a geometry finite in all directions, namely a three-dimensional
sphere with radiug. and Dirichlet boundary conditions on the surface. We choose a sphere
because for this geometry the mean-field problem (12) is again one-dimensional. However, it
cannot be solved analytically and we have to refer to numeric methods. Therefore, we cannotgo
beyond mean-field approximation. Nevertheless, in the dense and dilute limits some analytical
results can be derived.

For thed-dimensional sphere the ground state solu’(&@ﬁ‘r (¥) of the mean-field equation
will be given by a real symmetric function depending onlyrorso (12) reduces to

d2
—mvf Fry - ——wg”<r)+uosw Fr)? = Eqwd' (r)

/ d*r |y ()P = / dr 42|yt (r)> = 1 (43)
2 0

Yo'y =0 yg'fr <L) #0.
We rescale the problem
Jolr/L) E L3y (1) (44)
to get for the new functlomfo(r)
d2 -
I/fo(r) ——1//0(r) + 202 1/f0 (r) = Egyo(r)

EO = EolL?
(45)

1
f dr 4 r?|Yo(r))? = 1
0
Yo(1) =0 Jo(r < 1) £ 0.
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The mean-field partition function (14) is given by

2 2rugs?

1 1 274 -
ZMF(S) — 1271,2(\/0 dr rz_&,o(r)> e 5 .[0 drr Yo(r)=SEyL 2. (46)

Dilute limit. For L — oo at fixed chain lengtt§ we can neglect the ter#%slﬁg in (45).
Then the problem can be analytically solved to yield
1 sin(rr)

Yo(r) = \/T_ﬂ

For the mean-field solution we have

uoS siré(mr/L)

eur(r) = —I 271L3(r/—L)2

and the local segment density (22) can be written as
2¢ sin’(zr/L

(p(r)) = Eﬁ

The generalized partition function tends to

Ey=m2. (47)

(MF) 6 . n? S
28", 1) = 5 €Xp| (1, — 1})S — 755 + const - — (48)

whereu* = 0 has to be set. We get the same leading correctigng/L?) S as for the cubic
geometry with Dirichlet boundary conditions in one direction.

Dense limit. Fixing the segment density= S/ Q = S/(4m L3/3) in the limit L — oo, the
wg-term in (45) dominates and the ground state solution almost in the whole volume tends to
a constant with a steep descent at the surface of the spheee &t In the bulk we then have

. [3 )
lﬂo — E EO — MOCLz (49)

pmr — —iugc (p(r)) — c.

The partition function is given by
(MF) A L/ L&
ZG (¢, ug) = wexp _M_O (:u's — s)C + E (50)

with the usual abbreviatiod = ugc. Again, we recover the leading contributiéf&2 /2ug in
the exponent.

For finite values of the system siZewe have to solve the problem (45) numerically.
Figures 6 and 7 show the results for the normalized quantity

V5 (r)/¥5(0)
proportional to the segment density in the dilutgS fixed) and densé&c fixed) limits.

Renormalization. We renormalize the theory following the lines of section 3.2 to get for the
renormalized patrtition function

1 2 3 1
ZH (nR, %) = 127'[2< /O drrzz/?o(r)> exp[Znﬁn% (%) /0 dr r95(r)

I\
() |
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Figure 8. Mean-field partition function for a sphere with Dirichlet boundary conditions at the
critical chemical segment potentifl, = O for various system sizes. The full curves are the
respective results for a cube with periodic boundary conditions.

As before we restrict to the excluded volume fixed point and use the relations (29) for the
mapping from renormalized back to the physical quantities. In the crossover relation (30) we
have to take care that the confining volume for the sphere in three dimensions is modified by
a factor 4r/3. The renormalized segment concentration is then given by

3
~x R 14 ~x R Ir
cp=u"—l =1u — .
K Q k 47/3 (L)
In figure 8 we plotted the finite-size results for the partition function at the critical chemical
potential i, = O for various diameters of the sphere. For comparision we show also the
zero-loop results for a cube with periodic boundary conditions in all directions at system sizes
L' belonging to the same values of the volume

"3 s 3
(L)% = 3 LS.
Figures 9 and 10 show the segment density distribution at a fixed chemical segment potential
in the dense limit and the finite-size corrections to the equation of state. Figure 10 has to be
compared with figure 5. It is clearly seen that the finite-size corrections to the equation of
state for the sphere geometry are larger than for the cubic geometry with Dirichlet boundary

conditions in only one direction.

6. Summary

We developed a renormalized mean-field formalism for the calculation of the partition function
of a single polymer in finite volume with Dirichlet boundary conditions. We showed that within
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Figure 10. Equation of state for the sphere geometry with Dirichlet boundary conditions. The full
curve represents the bulk curve of the dense limit. For comparision we also show the results for a
cube with Dirichlet boundary conditions in one and periodic boundary conditions in the remaining

directions (DBC).
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the so-called ground state approximation for the mean-field Green function all fluctuations
around the mean-field solution can be integrated out and do not yield any corrections to
the mean-field result. To go beyond that result, the approximation for the mean-field Green
function has to be improved. However, what can actually be done analytically strongly depends
on the geometry considered.

The formalism was applied to two different geometries, a cube with Dirichlet boundary
conditions in only one direction and a three-dimensional sphere with Dirichlet boundary
condition on the surface. Whereas for the cubic geometry analytical results beyond the mean-
field approximation can be obtained at least in plate geometry, for the sphere the mean-field
solution can only be found by numerical methods.

By discussing the chain length distribution we showed for both geometries that as for
periodic boundary conditions the dense and dilute limits are describdd-by co at fixed
chemical segment potentiglf > /i, and i¥ < [i,, respectively. The different regimes
smoothly evolve from one another. In comparision to the periodic case the maximum of the
chain length distribution for Dirichlet boundary conditions gets shifted ky-&orrections to
lower values.
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